by Niels Bohr (1949)
From: http://www.marxists.org/reference/subject/philosophy/works/dk/bohr.htm
This crucial point, which was to become a main theme of the discussions reported in the following, implies the impossibility of any sharp separation between the behaviour of atomic objects and the interaction with the measuring instruments which serve to define the conditions under which the phenomena appear. In fact, the individuality of the typical quantum effects finds its proper expression in the circumstance that any attempt of subdividing the phenomena will demand a change in the experimental arrangement introducing new possibilities of interaction between objects and measuring instruments which in principle cannot be controlled. Consequently, evidence obtained under different experimental conditions cannot be comprehended within a single picture, but must be regarded as complementary in the sense that only the totality of the phenomena exhausts the possible information about the objects.
Under these circumstances an essential element of ambiguity isinvolved in ascribing conventional physical attributes to atomic objects, as is at once evident in the dilemma regarding the corpuscular and wave properties of electrons and photons, where we have to do with contrasting pictures, each referring to an essential aspect of empirical evidence. An illustrative example, of how the apparent paradoxes are removed by an examination of the experimental conditions under which the complementary phenomena appear, is also given by the Compton effect, the consistent description of which at first had presented us with such acute difficulties. Thus, any arrangement suited to study the exchange of energy and momentum between the electron and the photon must involve a latitude in the space-time description of the interaction sufficient for the definition of wave-number and frequency which enter into the relation (1). Conversely, any attempt of locating the collision between the photon and the electron more accurately would, on account of the unavoidable interaction with the fixed scales and clocks defining the space-time reference frame, exclude all closer account as regards the balance of momentum and energy.
As stressed in the lecture, an adequate tool for a complementary way of description is offered precisely by the quantum-mechanical formalism which represents a purely symbolic scheme permitting only predictions, on lines of the correspondence principle, as to results obtainable under conditions specified by means of classical concepts. It must here be remembered that even in the indeterminacy relation (3) we are dealing with an implication of the formalism which defies unambiguous expression in words suited to describe classical physical pictures. Thus, a sentence like "we cannot know both the momentum and the position of an atomic object" raises at once questions as to the physical reality of two such attributes of the object, which can be answered only by referring to the conditions for the unambiguous use of space-time concepts, on the one hand, and dynamical conservation laws, on the other hand. While the combination of these concepts into a single picture of a causal chain of events is the essence of classical mechanics, room for regularities beyond the grasp of such a description is just afforded by the circumstance that the study of the complementary phenomena demands mutually exclusive experimental arrangements.
The necessity, in atomic physics, of a renewed examination of the foundation for the unambiguous use of elementary physical ideas recalls in some way the situation that led Einstein to his original revision on the basis of all application of space-time concepts which, by its emphasis on the primordial importance of the observational problem, has lent such unity to our world picture. Notwithstanding all novelty of approach, causal description is upheld in relativity theory within any given frame of reference, but in quantum theory the uncontrollable interaction between the objects and the measuring instruments forces us to a renunciation even in such respect. This recognition, however, in no way points to any limitation of the scope of the quantum-mechanical description, and the trend of the whole argumentation presented in the Como lecture was to show that the viewpoint of complementarity may be regarded as a rational generalisation of the very ideal of causality.
At the general discussion in Como, we all missed the presence of Einstein, but soon after, in October 1927, I had the opportunity to meet him in Brussels at the Fifth Physical Conference of the Solvay Institute, which was devoted to the theme "Electrons and Photons." At the Solvay meetings, Einstein had from their beginning been a most prominent figure, and several of us came to the conference with great anticipations to learn his reaction to the latest stage of the development which, to our view, went far in clarifying the problems which he had himself from the outset elicited so ingeniously. During the discussions, where the whole subject was reviewed by contributions from many sides and where also the arguments mentioned in the preceding pages were again presented, Einstein expressed, however, a deep concern over the extent to which causal account in space and time was abandoned in quantum mechanics.
To illustrate his attitude, Einstein referred at one of the sessions to the simple example, illustrated by Fig. 1, of a particle (electron or photon) penetrating through a hole or a narrow slit in a diaphragm placed at some distance before a photographic plate.
On account of the diffraction of the wave connected with the motion of the particle and indicated in the figure by the thin lines, it is under such conditions not possible to predict with certainty at what point the electron will arrive at the photographic plate, but only to calculate the probability that, in an experiment, the electron will be found within any given region of the plate. The apparent difficulty, in this description, which Einstein felt so acutely, is the fact that, if in the experiment the electron is recorded at one point A of the plate, then it is out of the question of ever observing an effect of this electron at another point (B), although the laws of ordinary wave propagation offer no room for a correlation between two such events.
Einstein's attitude gave rise to ardent discussions within a small circle, in which Ehrenfest, who through the years had been a close friend of us both, took part in a most active and helpful way. Surely, we all recognised that, in the above example, the situation presents no analogue to the application of statistics in dealing with complicated mechanical systems, but rather recalled the background for Einstein's own early conclusions about the unidirection of individual radiation effects which contrasts so strongly with a simple wave picture. The discussions, however, centred on the question of whether the quantum-mechanical description exhausted the possibilities of accounting for observable phenomena or, as Einstein maintained, the analysis could be carried further and, especially, of whether a fuller description of the phenomena could be obtained by bringing into consideration the detailed balance of energy and momentum in individual processes.
To explain the trend of Einstein's arguments, it may be illustrative here to consider some simple features of the momentum and energy balance in connection with the location of a particle in space and time. For this purpose, we shall examine the simple case of a particle penetrating through a hole in a diaphragm without or with a shutter to open and close the hole, as indicated in Figs. 2a and 2b, respectively. The equidistant parallel lines to the left in the figures indicate the train of plane waves corresponding to the state of motion of a particle which, before reaching the diaphragm, has a momentum P related to the wave-number s by the second of equations (1). In accordance with the diffraction of the waves when passing through the hole, the state of motion of the particle to the right of the diaphragm is represented by a spherical wave train with a suitably defined angular aperture u and, in case of Fig. 2b, also with a limited radial extension. Consequently, the description of this state involves a certain latitude Dp in the momentum component of the particle parallel to the diaphragm and, in the case of a diaphragm with a shutter, an additional latitude DE of the kinetic energy.
Since a measure for the latitude Dq in location of the particle in the plane of the diaphragm is given by the radius a of the hole, and since u approx= (1/sa), we get, using (1), just Dp approx= uP approx= (h/Dq), in accordance with the indeterminacy relation (3). This result could, of course, also be obtained directly by noticing that, due to the limited extension of the wave-field at the place of the slit, the component of the wave-number parallel to the plane of the diaphragm will involve a latitude Ds approx= (1/a) approx= (1/Dq).
Similarly, the spread of the frequencies of the harmonic components in the limited wave-train in Fig. 2b is evidently Df approx= (1/Dt), where t is the time interval during which the shutter leaves the hole open and, thus, represents the latitude in time of the passage of the particle through the diaphragm. From (1), we therefore get
DE . Dt approx= h, | (4) |
again in accordance with the relation (3) for the two conjugated variables E and t.
From the point of view of the laws of conservation, the origin of such latitudes entering into the description of the state of the particle after passing through the hole may be traced to the possibilities of momentum and energy exchange with the diaphragm or the shutter. In the reference system considered in Figs. 2a and 2b, the velocity of the diaphragm may be disregarded and only a change of momentum Dp between the particle and the diaphragm needs to be taken into consideration. The shutter, however, which leaves the hole opened during the time t, moves with a considerable velocity v approx= (a/Dt), and a momentum transfer Dp involves therefore an energy exchange with the particle, amounting to vDp approx= (1/Dt) . Dq . Dp approx= (h/Dt), being just of the same order of magnitude as the latitude DE given by (4) and, thus, allowing for momentum and energy balance.
The problem raised by Einstein was now to what extent a control of the momentum and energy transfer, involved in a location of the particle in space and time, can be used for a further specification of the state of the particle after passing through the hole. Here, it must be taken into consideration that the position and the motion of the diaphragm and the shutter have so far been assumed to be accurately co-ordinated with the space-time reference frame. This assumption implies, in the description of the state of these bodies, an essential latitude as to their momentum and energy which need not, of course, noticeably affect the velocities, if the diaphragm and the shutter are sufficiently heavy. However, as soon as we want to know the momentum and energy of these parts of the measuring arrangement with an accuracy sufficient to control the momentum and energy exchange with the particle under investigation, we shall, in accordance with the general indeterminacy relations, lose the possibility of their accurate location in space and time. We have, therefore, to examine how far this circumstance will affect the intended use of the whole arrangement and, as we shall see, this crucial point clearly brings out the complementary character of the phenomena.
Returning for a moment to the case of the simple arrangement indicated in Fig. 1, it has so far not been specified to what use it is intended. In fact, it is only on the assumption that the diaphragm and the plate have well-defined positions in space that it is impossible, within the frame of the quantum-mechanical formalism, to make more detailed predictions as to the point
of the photographic plate where the particle will be recorded. If, however, we admit a sufficiently large latitude in the knowledge of the position of the diaphragm it should, in principle, be possible to control the momentum transfer to the diaphragm and, thus, to make more detailed predictions as to the direction of the electron path from the hole to the recording point. As regards the quantum-mechanical description, we have to deal here with a two-body system consisting of the diaphragm as well as of the particle, and it is just with an explicit application of conservation laws to such a system that we are concerned in the Compton effect where, for instance, the observation of the recoil of the electron by means of a cloud chamber allows us to predict in what direction the scattered photon will eventually be observed.
The importance of considerations of this kind was, in the course of the discussions, most interestingly illuminated by the examination of an arrangement where between the diaphragm with the slit and the photographic plate is inserted another diaphragm with two parallel slits, as is shown in Fig. 3. If a parallel beam of electrons (or photons) falls from the left on the first diaphragm, we shall, under usual conditions, observe on the plate an interference pattern indicated by the shading of the photographic plate shown in front view to the right of the figure. With intense beams, this pattern is built up by the accumulation of a large number of individual processes, each giving rise to a small spot on the photographic plate, and the distribution of these spots follows a simple law derivable from the wave analysis. The same distribution should also be found in the statistical account of many experiments performed with beams so faint that in a single exposure only one electron (or photon) will arrive at the photographic plate at some spot shown in the figure as a small star. Since, now, as indicated by the broken arrows, the momentum transferred to the first diaphragm ought to be different if the electron was assumed to pass through the upper or the lower slit in the second diaphragm, Einstein suggested that a control of the momentum transfer would permit a closer analysis of the phenomenon and, in particular, to decide through which of the two slits the electron had passed before arriving at the plate.
A closer examination showed, however, that the suggested control of the momentum transfer would involve a latitude in the knowledge of the position of the diaphragm which would exclude the appearance of the interference phenomena in question. In fact, if w is the small angle between the conjectured paths of a particle passing through the upper or the lower slit, the difference of momentum transfer in these two cases will, according to (1), be equal to hsw and any control of the momentum of the diaphragm with an accuracy sufficient to measure this difference will, due to the indeterminacy relation, involve a minimum latitude of the position of the diaphragm, comparable with 1/sw. If, as in the figure, the diaphragm with the two slits is placed in the middle between the first diaphragm and the photographic plate, it will be seen that the number of fringes per unit length will be just equal to hsw and, since an uncertainty in the position of the first diaphragm of the amount of 1/sw will cause an equal uncertainty in the positions of the fringes, it follows that no interference effect can appear. The same result is easily shown to hold for any other placing of the second diaphragm between the first diaphragm and the plate, and would also be obtained if, instead of the first diaphragm, another of these three bodies were used for the control, for the purpose suggested, of the momentum transfer.
This point is of great logical consequence, since it is only the circumstance that we are presented with a choice of either tracing the path of a particle or observing interference effects, which allows us to escape from the paradoxical necessity of concluding that the behaviour of an electron or a photon should depend on the presence of a slit in the diaphragm through which it could be proved not to pass. We have here to do with a typical example of how the complementary phenomena appear under mutually exclusive experimental arrangements and are just faced with the impossibility, in the analysis of quantum effects, of drawing any sharp separation between an independent behaviour of atomic objects and their interaction with the measuring instruments which serve to define the conditions under which the phenomena occur.
Our talks about the attitude to be taken in face of a novel situation as regards analysis and synthesis of experience touched naturally on many aspects of philosophical thinking, but, in spite of all divergencies of approach and opinion, a most humorous spirit animated the discussions. On his side, Einstein mockingly asked us whether we could really believe that the providential authorities took recourse to dice-playing (". . . ob der liebe Gott würfelt"), to which I replied by pointing at the great caution, already called for by ancient thinkers, in ascribing attributes to Providence in every-day language. I remember also how at the peak of the discussion Ehrenfest, in his affectionate manner of teasing his friends, jokingly hinted at the apparent similarity between Einstein's attitude and that of the opponents of relativity theory; but instantly Ehrenfest added that he would not be able to find relief in his own mind before concord with Einstein was reached.
Einstein's concern and criticism provided a most valuable incentive for us all to re-examine the various aspects of the situation as regards the description of atomic phenomena. To me it was a welcome stimulus to clarify still further the role played by the measuring instruments and, in order to bring into strong relief the mutually exclusive character of the experimental conditions under which the complementary phenomena appear, I tried in those days to sketch various apparatus in a pseudo-realistic style of which the following figures are examples. Thus, for the study of an interference phenomenon of the type indicated in Fig. 3, it suggests itself to use an experimental arrangement like that shown in Fig. 4, where the solid parts of the apparatus, serving as diaphragms and plateholder, are firmly bolted to a common support.
In such an arrangement, where the knowledge of the relative positions of the diaphragms and the photographic plate is secured by a rigid connection, it is obviously impossible to control the momentum exchanged between the particle and the separate parts of the apparatus. The only way in which, in such an arrangement, we could insure that the particle passed through one of the slits in the second diaphragm is to cover the other slit by a lid, as indicated in the figure; but if the slit is covered, there is of course no question of any interference phenomenon, and on the plate we shall simply observe a continuous distribution as in the case of the single fixed diaphragm in Fig. 1.