on Epistemological Problems in Atomic Physics. Part 1

*by Niels Bohr (1949)*

From: http://www.marxists.org/reference/subject/philosophy/works/dk/bohr.htm

WHEN invited by the Editor of the series, *Living Philosophers*,
to write an article for this volume in which contemporary scientists
are honouring the epoch-making contributions of Albert Einstein
to the progress of natural philosophy and are acknowledging the
indebtedness of our whole generation for the guidance his genius
has given us, I thought much of the best way of explaining how much
I owe to him for inspiration. In this connection, the many occasions
through the years on which I had the privilege to discuss with Einstein
epistemological problems raised by the modern development of atomic
physics have come back vividly to my mind and I have felt that I
could hardly attempt anything better than to give an account of
these discussions which, even if no complete concord has so far
been obtained, have been of greatest value and stimulus to me. I
hope also that the account may convey to wider circles an impression
of how essential the open-minded exchange of ideas has been for
the progress in a field where new experience has time after time
demanded a reconsideration of our views.

From the very beginning the main point under debate has been the attitude to take to the departure from customary principles of natural philosophy characteristic of the novel development of physics which was initiated in the first year of this century by Planck's discovery of the universal quantum of action. This discovery, which revealed a feature of atomicity in the laws of nature going far beyond the old doctrine of the limited divisibility of matter, has indeed taught us that the classical theories of physics are idealisations which can be unambiguously applied only in the limit where all actions involved are large compared with the quantum. The question at issue has been whether the renunciation of a causal mode of description of atomic processes involved in the endeavours to cope with the situation should be regarded as a temporary departure from ideals to be ultimately revived or whether we are faced with an irrevocable step towards obtaining the proper harmony between analysis and synthesis of physical phenomena. To describe the background of our discussions and to bring out as clearly as possible the arguments for the contrasting viewpoints, I have felt it necessary to go to a certain length in recalling some main features of the development to which Einstein himself has contributed so decisively.

As is well known, it was the intimate relation, elucidated primarily by Boltzmann, between the laws of thermodynamics and the statistical regularities exhibited by mechanical systems with many degrees of freedom, which guided Planck in his ingenious treatment of the problem of thermal radiation, leading him to his fundamental discovery. While, in his work, Planck was principally concerned with considerations of essentially statistical character and with great caution refrained from definite conclusions as to the extent to which the existence of the quantum implied a departure from the foundations of mechanics and electrodynamics, Einstein's great original contribution to quantum theory (1905) was just the recognition of how physical phenomena like the photo-effect may depend directly on individual quantum effects. In these very same years when, in developing his theory of relativity, Einstein laid a new foundation for physical science, he explored with a most daring spirit the novel features of atomicity which pointed beyond the whole framework of classical physics.

With unfailing intuition Einstein thus was led step by step to the conclusion that any radiation process involves the emission or absorption of individual light quanta or "photons" with energy and momentum

E
= hf and P = hs | (1) |

respectively, where *h* is Planck's constant, while *f*
and *s* are the number of vibrations per unit time and the
number of waves per unit length, respectively. Notwithstanding its
fertility, the idea of the photon implied a quite unforeseen dilemma,
since any simple corpuscular picture of radiation would obviously
be irreconcilable with interference effects, which present so essential
an aspect of radiative phenomena, and which can be described only
in terms of a wave picture. The acuteness of the dilemma is stressed
by the fact that the interference effects offer our only means of
defining the concepts of frequency and wavelength entering into
the very expressions for the energy and momentum of the photon.

In this situation, there could be no question of attempting a causal analysis of radiative phenomena, but only, by a combined use of the contrasting pictures, to estimate probabilities for the occurrence of the individual radiation processes. However, it is most important to realize that the recourse to probability laws under such circumstances is essentially different in aim from the familiar application of statistical considerations as practical means of accounting for the properties of mechanical systems of great structural complexity. In fact, in quantum physics we are presented not with intricacies of this kind, but with the inability of the classical frame of concepts to comprise the peculiar feature of indivisibility, or "individuality," characterising the elementary processes.

The failure of the theories of classical physics in accounting for atomic phenomena was further accentuated by the progress of our knowledge of the structure of atoms. Above all, Rutherford's discovery of the atomic nucleus (1911) revealed at once the inadequacy of classical mechanical and electromagnetic concepts to explain the inherent stability of the atom. Here again the quantum theory offered a clue for the elucidation of the situation and especially it was found possible to account for the atomic stability, as well as for the empirical laws governing the spectra of the elements, by assuming that any reaction of the atom resulting in a change of its energy involved a complete transition between two so-called stationary quantum states and that, in particular, the spectra were emitted by a step-like process in which each transition is accompanied by the emission of a monochromatic light quantum of an energy just equal to that of an Einstein photon.

These ideas, which were soon confirmed by the experiments of Franck and Hertz (1914) on the excitation of spectra by impact of electrons on atoms, involved a further renunciation of the causal mode of description, since evidently the interpretation of the spectral laws implies that an atom in an excited state in general will have the possibility of transitions with photon emission to one or another of its lower energy states. In fact, the very idea of stationary states is incompatible with any directive for the choice between such transitions and leaves room only for the notion of the relative probabilities of the individual transition processes. The only guide in estimating such probabilities was the so-called correspondence principle which originated in the search for the closest possible connection between the statistical account of atomic processes and the consequences to be expected from classical theory, which should be valid in the limit where the actions involved in all stages of the analysis of the phenomena are large compared with the universal quantum.

At that time, no general self-consistent quantum theory was yet in sight, but the prevailing attitude may perhaps be illustrated by the following passage from a lecture by the writer from 1913:

I hope that I have expressed myself sufficiently clearly so that you may appreciate the extent to which these considerations conflict with the admirably consistent scheme of conceptions which has been rightly termed the classical theory of electrodynamics. On the other hand, I have tried to convey to you the impression that just by emphasising so strongly this conflict it may also be possible in course of time to establish a certain coherence in the new ideas.

Important progress in the development of quantum theory was made
by Einstein himself in his famous article on radiative equilibrium
in 1917, where he showed that Planck's law for thermal radiation
could be simply deduced from assumptions conforming with the basic
ideas of the quantum theory of atomic constitution. To this purpose,
Einstein formulated general statistical rules regarding the occurrence
of radiative transitions between stationary states, assuming not
only that, when the atom is exposed to a radiation field, absorption
as well as emission processes will occur with a probability per
unit time proportional to the intensity of the irradiation, but
that even in the absence of external disturbances spontaneous emission
processes will take place with a rate corresponding to a certain
*a priori* probability. Regarding the latter point, Einstein
emphasised the fundamental character of the statistical description
in a most suggestive way by drawing attention to the analogy between
the assumptions regarding the occurrence of the spontaneous radiative
transitions and the well-known laws governing transformations of
radioactive substances.

In connection with a thorough examination of the exigencies of thermodynamics as regards radiation problems, Einstein stressed the dilemma still further by pointing out that the argumentation implied that any radiation process was "unidirected" in the sense that not only is a momentum corresponding to a photon with the direction of propagation transferred to an atom in the absorption process, but that also the emitting atom will receive an equivalent impulse in the opposite direction, although there can on the wave picture be no question of a preference for a single direction in an emission process. Einstein's own attitude to such startling conclusions is expressed in a passage at the end of the article, which may be translated as follows:

These features of the elementary processes would seem to make the development of a proper quantum treatment of radiation almost unavoidable. The weakness of the theory lies in the fact that, on the one hand, no closer connection with the wave concepts is obtainable and that, on the other hand, it leaves to chance (

Zufall) the time and the direction of the elementary processes; nevertheless, I have full confidence in the reliability of the way entered upon.

When I had the great experience of meeting Einstein for the first
time during a visit to Berlin in 1920, these fundamental questions
formed the theme of our conversations. The discussions, to which
I have often reverted in my thoughts, added to all my admiration
for Einstein a deep impression of his detached attitude. Certainly,
his favoured use of such picturesque phrases as "ghost waves
(*Gespensterfelder*) guiding the photons" implied no tendency
to mysticism, but illuminated rather a profound humour behind his
piercing remarks. Yet, a certain difference in attitude and outlook
remained, since, with his mastery for co-ordinating apparently contrasting
experience without abandoning continuity and causality, Einstein
was perhaps more reluctant to renounce such ideals than someone
for whom renunciation in this respect appeared to be the only way
open to proceed with the immediate task of co-ordinating the multifarious
evidence regarding atomic phenomena, which accumulated from day
to day in the exploration of this new field of knowledge.

In the following years, during which the atomic problems attracted the attention of rapidly increasing circles of physicists, the apparent contradictions inherent in quantum theory were felt ever more acutely. Illustrative of this situation is the discussion raised by the discovery of the Stern-Gerlach effect in 1922. On the one hand, this effect gave striking support to the idea of stationary states and in particular to the quantum theory of the Zeeman effect developed by Sommerfeld, on the other hand, as exposed so clearly by Einstein and Ehrenfest, it presented with unsurmountable difficulties any attempt at forming a picture of the behaviour of atoms in a magnetic field. Similar paradoxes were raised by the discovery by Compton (1924) of the change in wave-length accompanying the scattering of X-rays by electrons. This phenomenon afforded, as is well known, a most direct proof of the adequacy of Einstein's view regarding the transfer of energy and momentum in radiative processes; at the same time, it was equally clear that no simple picture of a corpuscular collision could offer an exhaustive description of the phenomenon. Under the impact of such difficulties, doubts were for a time entertained even regarding the conservation of energy and momentum in the individual radiation processes; a view, however, which very soon had to be abandoned in face of more refined experiments bringing out the correlation between the deflection of the photon and the corresponding electron recoil.

The way to the clarification of the situation was, indeed, first to be paved by the development of a more comprehensive quantum theory. A first step towards this goal was the recognition by de Broglie in 1925 that the wave-corpuscle duality was not confined to the properties of radiation, but was equally unavoidable in accounting for the behaviour of material particles. This idea, which was soon convincingly confirmed by experiments on electron interference phenomena, was at once greeted by Einstein, who had already envisaged the deep-going analogy between the properties of thermal radiation and of gases in the so-called degenerate state. The new line was pursued with the greatest success by Schrödinger (1926) who, in particular, showed how the stationary states of atomic systems could be represented by the proper solutions of a wave-equation to the establishment of which he was led by the formal analogy, originally traced by Hamilton, between mechanical and optical problems. Still, the paradoxical aspects of quantum theory were in no way ameliorated, but even emphasised, by the apparent contradiction between the exigencies of the general superposition principle of the wave description and the feature of individuality of the elementary atomic processes.

At the same time, Heisenberg (1925) had laid the foundation of a rational quantum mechanics, which was rapidly developed through important contributions by Born and Jordan as well as by Dirac. In this theory, a formalism is introduced, in which the kinematical and dynamical variables of classical mechanics are replaced by symbols subjected to a non-commutative algebra. Notwithstanding the renunciation of orbital pictures, Hamilton's canonical equations of mechanics are kept unaltered and Planck's constant enters only in the rules of commutation h

qp -pq = -(h/2pi)
, | (2) |

holding for any set of conjugate variables *q* and *p*.
Through a representation of the symbols by matrices with elements
referring to transitions between stationary states, a quantitative
formulation of the correspondence principle became for the first
time possible. It may here be recalled that an important preliminary
step towards this goal was reached through the establishment, especially
by contributions of Kramers, of a quantum theory of dispersion making
basic use of Einstein's general rules for the probability of the
occurrence of absorption and emission processes.

This formalism of quantum mechanics was soon proved by Schrödinger to give results identical with those obtainable by the mathematically often more convenient methods of wave theory, and in the following years general methods were gradually established for an essentially statistical description of atomic processes combining the features of individuality and the requirements of the superposition principle, equally characteristic of quantum theory. Among the many advances in this period, it may especially be mentioned that the formalism proved capable of incorporating the exclusion principle which governs the states of systems with several electrons, and which already before the advent of quantum mechanics had been derived by Pauli from an analysis of atomic spectra. The quantitative comprehension of a vast amount of empirical evidence could leave no doubt as to the fertility and adequacy of the quantum-mechanical formalism, but its abstract character gave rise to a widespread feeling of uneasiness. An elucidation of the situation should, indeed, demand a thorough examination of the very observational problem in atomic physics.

This phase of the development was, as is well known, initiated
in 1927 by Heisenberg, who pointed out that the knowledge obtainable
of the state of an atomic system will always involve a peculiar
"indeterminacy." Thus, any measurement of the position
of an electron by means of some device, like a microscope, making
use of high frequency radiation, will, according to the fundamental
relations (1), be connected with a momentum exchange between the
electron and the measuring agency, which is the greater the more
accurate a position measurement is attempted. In comparing such
considerations with the exigencies of the quantum-mechanical formalism,
Heisenberg called attention to the fact that the commutation rule
(2) imposes a reciprocal limitation on the fixation of two conjugate
variables, *q* and *p*, expressed by the relation

Dq . DP approx= h, | (3) |

where D*q* and D*p* are suitably defined latitudes in
the determination of these variables *[I use D for the Greek letter
Delta - AB]*. In pointing to the intimate connection between
the statistical description in quantum mechanics and the actual
possibilities of measurement, this so-called indeterminacy relation
is, as Heisenberg showed, most important for the elucidation of
the paradoxes involved in the attempts of analysing quantum effects
with reference to customary physical pictures.

The new progress in atomic physics was commented upon from various
sides at the International Physical Congress held in September 1927,
at Como in commemoration of Volta. In a lecture on that occasion,
I advocated a point of view conveniently termed "complementarity,"
suited to embrace the characteristic features of individuality of
quantum phenomena, and at the same time to clarify the peculiar
aspects of the observational problem in this field of experience.
For this purpose, it is decisive to recognise that, *however far
the phenomena transcend the scope of classical physical explanation,
the account of all evidence must be expressed in classical terms*.
The argument is simply that by the word "experiment" we
refer to a situation where we can tell others what we have done
and what we have learned and that, therefore, the account of the
experimental arrangement and of the results of the observations
must be expressed in unambiguous language with suitable application
of the terminology of classical physics.