On Quantum Mechanics and the Implicate Order. Part 4

an Interview with Dr. BASIL J. HILEY
interview conducted by Mitja Perus
National Institute of Chemistry, Ljubljana, Slovenia
Basil J. Hiley
is of the Physics Department, Birkbeck College, University of London
and is the co-author of the ontological interpretation of quantum theory
with the late Professor David Bohm

From: http://www.goertzel.org/dynapsyc/1997/interview.html


M.P.: What is holomovement? Is it "nothing" and at he same time "everything"? "Nothing", when we are not explicitly interacting with it; "everything", when we break its symmetry by interacting with it?
HILEY: That is one way of putting it. Our idea is that "nothing" means "no thing". This ties with the vacuum. We find it very difficult to understand different vacuum states. Recall that when Maxwell was talking about the vacuum, he defined it as that which is left when we take everything that we know about out of it. So it is not really "nothingness". If there are features, which you cannot take out of it (this means that there are no things there), that does not mean that there is no process there. A thing or particle is only a semi-autonomous quasi-stable feature; it has a finite life-time; it is not an entity in itself. If it does not have a finite life-time, we would never see it. But that does not mean that it is not there. The processes, the movements are so rapid in the vacuum, that you have to state that there is no THING there, but there is plenty of energy and activity which is formless. When you are making measurements or interacting with it, you are breaking the symmetry. And making a thing out of it.


M.P.: Are there different kinds of vacuum or holomovement?
HILEY: Yes, there are inequivalent vacuum states. Bogoljubov in Russia made such transformations which are changes from one vacuum state to another and he was able to use it to explain phenomena of superfluidity. The holomovement contains all these different vacuua.


M.P.: What is the role of mind and consciousness in your interpretation of QM?
HILEY: If you take the Bohm ontological interpretation, then it possible to bring in mind, but not directly as for example in the von Neumann-Wigner approach. We do not display the quantum phenomena directly, rather we always display their effects in classical matter. We say that some parts of matter are manifest and the quantum features are subtler and these subtle features are reflected in this manifest order. When we go to the idea of the brain function and thought, the best way to explain this is by considering what happens when we see a shadow in the dark. Immediately there is a chemical response - adrenalyne flows, blood flows faster, electrochemical processes take place, we become frightened and we start to sweat. If this shadow is a friend then all that subsides. So, thought has a chemical side, but also a subtle side. If you like, you can extend this idea to all physical phenomena and say that every process in nature has a manifest side and a subtle side. Mind-like properties are always exhibited in the subtle side. In QM at the lower level we have the quantum processes on the subtle side; they have "mind-like features". These features become more and more magnified as we go through to the matter in the brain. So, in the brain we have a chemical side, which is the manifest side, and the subtle side - thought. It still appears to be dualism with two sides - the manifest side and the subtle side, but Bohm's idea is that if you look at the manifest side, you will see some subtle features in there and some manifest features. If you look at the subtle side, you will see some subtler features, so you can regard those features, which are not so subtle, as manifest ones. There is a whole hierarchy...

Whenever you make a cut, there is always a manifest pole and always a subtle pole. There is never a duality; there are always only two sides and they form a unity, where mind and matter actually merge and become indivisible - although at the higher level you can distinguish between manifest and subtle side. But this whole process is mind, and activity is regarded as what constitutes consciousness. We are living in a Universe, where subdivisions are appearances, not essences.

M.P.: Now, may I ask you directly what mind is, from your point of view? Which is the underlying medium of mind?

HILEY: Mind is not an entity in itself. Mind is a relationship between what can be made manifest at any stage and the subtle features within this manifest order...

M.P.: What is the nature of these subtle features which are mind-like?

HILEY: They are features which work on information. For example, when you are walking and shadow appears, this has a role of an active information - a warning, which goes to the brain and chemical processes get to work. Then further information comes in so that the status of the original information is changed. It may become inactive. So there is a continuous change of information from active to passive to inactive. It is the process that shows a mind-like quality. Then mind is able to process this information. How does it process it? Through neural networks etc.? This is something that people like yourself are trying to investigate.

M.P.: The question remains whether these processes are going on at a neural level or a quantum level or both levels?

HILEY: It is the principle of a quantum process that applies, it is not quantum mechanics per se. You do not apply Schroedinger equation at every level. Rather you say that at every level there is a mechanical feature which is governed by classical processes, and there is this subtle feature, which is governed by indivisibility. If you like, a type of quantum potential, but it is not necessary the quantum potential that arises only from Schroedinger equation. It may arise from much more subtle processes. But the point is to look within these processes and ask whether wholeness appears. We have not translated that into the detailed relations with processes in the brain yet. We have seen how these features arise in QM, now we have to see how they arise in the brain.


M.P.: I research analogies between associative neural networks and the quantum theory. I see that there are important similarities. Do you think that these two levels are in some sort of fractal relationship?
HILEY: Yes, this is what David Bohm and I were discussing before he died. He introduced (in the book with David Peat) a new notion of generative order. The implicate-explicate order by itself is not sufficient. Take the example of unfolding process illustrated in the ink-drop experiment, used to describe the implicate order. There you put in a structure and then show that it is revealed at a later time. We really need some sort of a deeper order, in which there is a possibility to create new structures and new orders. Evolution, for example, is not just by chance; there is some creativity going on in this holomovement. Therefore Bohm needs the generative order which he argues has some features in common with fractals as the self-similarity. But I think we have to go even deeper than that. There are two types of movements - a linear one which was the unfolding of the ink-dots, and also a deeper movement which we have not yet fully grasped, which is changing that overall movement and creating new information and new form. I do not know how you do that in terms of neural nets. I have not seen anybody who would put it in the form of a generative order. With generative order we go beyond QM. We are here talking about the form in which we can carry the content. This new order takes its cues from QM, but it does not use the equations of QM. We have to find the appropriate equations.


M.P.: Could it be plausible to identify, for the sake of modelling only, the "hidden variables" or "beables" with formal neurons in a neural network model - not real neurons as some rigid biological cells, but as some abstract mathematical points)?
HILEY: That is certainly what I am trying to investigate - how to mathematize a process. There are already clues using combinatorial topology where you can analyze a structure process in terms of simplexes etc. John Shawe-Taylor said that the structure that I have been talking about, was very similar to neural networks. I would like to explore this in more detail, present it in a mathematical form to people working in neural network theory and then to interact with them to see whether one can actually combine two different sets of ideas.


M.P.: How would you react to a hypothesis that a SPECIFIC conscious interaction, which uses KNOWLEDGE about the quantum system, is needed for a "local collapse" of the wave-function. Namely, in a hologram (and neural network also) the system reconstructs ("collapses into") an eigenstate (a pattern) if one triggers such reconstruction by presenting only a PART of the pattern. So by knowing the part one can trigger a self-organizing process of the system which results in reconstructing the WHOLE eigenstate or pattern. Without knowing the part only a random interaction would be possible and there is a very low probability that such a random interaction would include the "partial information" needed for the "collapse". Knowledge raises the probability for such an event enormously. What is your response to that?
HILEY: One of the aspects, that is missing from a quantum system, is that idea of actualization. The reason for this is that QM insists on unitary transformations. They are nothing more than the re-description. Nothing new comes out of that...

Prigogine has also been working on this, and our two sets of theories seem to have a lot of similarities. He has been working on the question of time, on the question of irreversibility. In the implicate order, which has irreversibility in it, you have the possibility of time coming out. So you have the possibility of directedness, of coming to an attractor, of determining the evolution of the system. This has to be added to QM in order to bring it closer to what you are doing in neural networks where you have attractor-basins etc. That is missing in QM, or it does not seem to be necessary in QM. Prigogine claims that this might also solve the collapse problem when you are looking at quantum theory in terms of psi being the most complete description of state of the system. I am not sure he has got it right; there are some great difficulties, but it is very interesting. One has to add something to the quantum theory to get these energy troughs which give stability and give pattern recognition in neural network theory. The reconstructing process is not necessarily a quantum-mechanical phenomenon, because you can reconstruct the holograms simply because there are already relations implicit - all the local relations, all the spatial and all the neighbourhood relations are there. The point is finding an algorithm to fill in the missing features of the relationship. That comes out of the algebras of process (one of them is Fourier analysis). I am not sure if QM will help or hinder the understanding of these problems.

I am not sure whether this answers your question. What do you mean by random interaction?

M.P.: If we do not have the knowledge about the part of the eigenstate (pattern), then collapse or, analogically, pattern reconstruction will not occur. A random interaction will not cause it. We need a very specific interaction which includes information.

HILEY: Yes, it is quite easy to see why if you have knowledge it helps, because you then pick out those particular relationships which fit. Where does this knowledge come from? From the memory traces. You see, you could do this purely mechanically. You could have a whole data base. Your eigenvectors label the memory store. If you have a certain eigenvector, then that goes to a certain whole - where you have the whole information and previous experiences. I do not feel that there is anything creative here; it is purely mechanical unless I missed the point of your question.

I would not call that trigger of the collapse "knowledge", I would call it "memory knowledge". Knowledge is knowing about something. You are looking in the book and it is all written there; it is not dynamic; it is not understanding...

M.P.: Of course, for knowledge we use memory...

HILEY: If you are talking about judgement, then that is something else again. If you have something to tell you which eigenvector to use, then you have something that is going beyond the mechanical...

M.P.: Yes. I mean knowledge as something that is determining the initial conditions of that process of the pattern reconstruction.

HILEY: Making the choice? To choose the eigenvector which you are going to use.

M.P.: Yes... Well, this is more a question of cognitive level.

HILEY: I do not think that QM per se, and general forms of Bohm's suggestions about consciousness, have anything important to say about that at this stage.

The question is: is mind purely mechanical? If it is, then you can use the principles of classical mechanics.

M.P.: No, I do not think so (at least not for consciousness).

HILEY: OK, so mind is not mechanical, it is holistic. Therefore there has to be some interplay between the manifest aspect and the subtle aspect. What that is in the case of word "knowledge", which you are using, is not at all clear at the moment.

M.P.: The question is, to which extent some classical complex systems are sufficient, and on what level we need consciousness and QM to take part in mental processes.

HILEY: That is the very deep question which we have to answer. You are putting in different words, what I have said earlier, that you have to find out what manifest aspects display the subtle aspects of mind-like qualities which make the choice. It is not obvious whether are there some neurotransmiters responsible for this, or is it the dendritic field, or is it some superfield, etc. Can the mind influence the quantum potential? We do not know the answer at the moment.

M.P.: I think that neural network theory also needs such notions like implicate and explicate order.

HILEY: I agree. The question is, how to translate these general ideas that I have been talking about into particular situations where we are dealing with networks etc.


M.P.: At the end a special question: What is the role of transcendental meditational and mystical experiences in the context of the whole interview? Professor Bohm was thinking about that also, wasn't he? And you personally also?
HILEY: I do not know quite what you mean by transcendental meditation. Bohm was not a man who would try to transcend..., but he certainly felt that it was a spiritual side to man. I would not call him a religious man, but he was very sensitive, always seeking harmony, understanding, coherence. In some sense this is a kind of spirituality. He was very much concerned with how to handle wholeness, how can we talk about it and begin to analyze it and to use it; how can we be creative. Then he would begin to develop ideas which have certain resonances with the Eastern traditions, meditation, mystical experiences. I do not think he would call them mystical experiences; he would talk about quietness of the mind which would allow the implicate order of the mind to throw up new explicate orders, or allow generative orders to be creative... He was trying to do that in the mind. In that sense you could say that it was a mystical experience. But not mystical experience in a sense that a lot of people would use the word.

M.P.: I wanted to ask you whether he was thinking that it is possible to have experiences of this wholeness which he was often talking about, and on what level is this wholeness, which can be experienced in the mind, represented?

HILEY: He certainly felt that thought directly perceives the implicate order. He told me that in many occasions. He never claimed that he ever had mystical experiences; he was conscious of that, because he was always complaining about the noise of thought. I have to emphasize that David Bohm was a very private man. It was very difficult for me to get into this kind of discussion with him. By trying to abstract from our discussions we had together, I know that trying to achieve a mystical experience was not on the agenda. He was rather trying to understand the implicate order, but because the implicate order required to go beyond thought even, then in that sense it was a kind of mystical experience.


M.P.: That answers my question... To conclude, are there still some topics which have not yet been represented in this interview, and do we have to add or to emphasize anything?
HILEY: We are not presenting these ideas as firm, well established theories. They are rather proposals at a very primitive stage of development. The reason, why we distinguish implicate and explicate orders, is that so often, either in the mind and in QM, one can only display partial aspect of reality. We are involved, we participate in nature, and this necessarily means that we cannot get a view of nature which is out-there, "the third eye view", and get an intellectual view of the whole of reality.

Suppose, in QM, a position is emerging from a process. One can explicate position, but we cannot say anything about momentum, or one can explicate the momentum without being able to say anything about the position. In that sense the uncertainty principle has nothing to do with observation, but is something ontological. We are very familiar with the kind of things that go on in the brain, because we can create certain thought patterns and we can hold them in our mind, but then we cannot hold another one at the same time. Many thought patterns are mutually exclusive. You explicate one type of thought pattern, or you explicate another, but not everything together, because the "eye" that is looking at the mind is a part of the mind.

The notion of implicate order is proposed for people to experiment with it. It is not presented as final form, so it needs a lot of exploration and debate.